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Abstract

In this paper, a spectral element model is derived for the dynamics and stability analyses of the axially moving
viscoelastic beams subject to axial tension. The viscoelastic material is represented in a general form by using the
one-dimensional constitutive equation of hereditary integral type. The high accuracy of the present spectral ele-
ment model is verified first by comparing the eigenvalues obtained by the present spectral element model with
those obtained by using the conventional finite element model as well as with the exact analytical solutions.
The effects of viscoelasticity and moving speed on the dynamics and stability of moving beams are numerically
investigated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The moving belt used in power transmissions is an example of axially moving one-dimensional struc-
tures. Above a certain critical moving speed, such axially moving structures may experience severe vibra-
tions and dynamical instabilities to cause structural failures. To ensure that such structural systems are
under stable working conditions, the dynamic responses and stability of such systems have been studied
extensively. In most existing previous works, the axially moving one-dimensional structures were assumed
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to be elastic and represented by string models or beam models. An extensive literature overview on this sub-
ject can be found from Wickert and Mote (1988).

With the advancement of material technologies, new materials such as plastics, metallic or ceramic
reinforced composite materials and polymeric materials are now widely used for moving belts (e.g., Fung
et al., 1997; Zhang and Zu, 1998, 1999; Hou and Zu, 2002; Marynowski and Kapitaniak, 2002). Such
materials do not obey Hook’s law, but exert inherently viscoelastic behavior which can be modeled by
integral or differential type of constitutive equations (Fligge, 1975; Christensen, 1982; Haddad, 1995).
However, to the authors’ surprises, the literature that is specially related to a viscoelastic moving struc-
tures is found to be very limited. Fung et al. (1997) seems to be the first to discuss the transverse vibra-
tion of a viscoelastic moving belt of which material was modeled by a standard linear solid model of
hereditary integral type. They used a Galerkin’s method and a finite difference numerical integration pro-
cedure to obtain the transient responses. Later on, Fung et al. (1998) extended their previous work to
investigate the effect of material damping on the nonlinear free vibration of moving belts, while Zhang
and Zu (1998, 1999) considered the nonlinear free and forced vibrations and parametrically excited oscil-
lations by adopting a Kelvin model of differential type for the viscoelastic material of moving belt. Hou
and Zu (2002) used a standard linear solid model of differential type to investigate the nonlinear free
oscillations of moving viscoelastic belts. In the aforementioned references, the moving viscoelastic belts
were all represented by string models. The beam model was used by Marynowski and Kapitaniak
(2002) to investigate the stability and oscillations of an axially moving viscoelastic web by using the
Runge-Kutta method. They used the differential type of constitutive equations for the viscoelastic mate-
rial of web.

In the literature, various solution methods have been presented for the vibration analysis of linear vis-
coelastic structures; for instance, Galerkin’s method (e.g., Fung et al., 1997), Runge-Kutta method (e.g.,
Marynowski and Kapitaniak, 2002), Laplace transform method (e.g., Fliigge, 1975), the correspondence
and superposition principles (e.g., Findley et al., 1976), Fourier transform method (e.g., Christensen,
1982), finite element method (e.g. White, 1986), hybrid Laplace transform/finite element method (e.g.,
Chen, 1995), and so forth.

The spectral element method (SEM) is an exact solution method for the dynamic analysis of struc-
tures (Doyle, 1997; Lee et al., 2000; Lee, 2004). In SEM, the FFT-techniques based on spectral element
matrix (often called ‘exact dynamic stiffness matrix’) are used to obtain dynamic responses in the fre-
quency- and time-domains. The spectral element matrix is formulated in the frequency-domain by using
the frequency-dependent dynamic shape functions satisfying governing structural dynamic equations.
Thus, it allows one to use only one finite element for a uniform structure, regardless of its length.
The conventional finite element assembly procedure can be equally used in SEM to formulate the sys-
tem equation of complicated structures. In SEM, the dynamic responses in frequency- and time-do-
mains are computed very efficiently by using the forward-FFT (simply, FFT) and inverse-FFT
(simply, IFFT) algorithms. The use of FFT-techniques may improve the solution accuracy considerably,
while reducing the computational costs. Because the SEM is a frequency-domain method, it seems to be
best fit for viscoelastic structures of which material properties are most often extracted indirectly from
the experimental forced vibration responses given in the form of receptance frequency response func-
tions (FRF) (e.g., Dalenbring, 2003). Although the spectral element matrix for the axially moving
zelastic string was recently derived by Le-Ngoc and McCallion (1999) to obtain exact eigenvalues,
the spectral element matrix for the axially moving viscoelastic beam has not been published in the
literature.

Thus, the purposes of this paper are to develop a spectral element model for the axially moving visco-
elastic beams subject to axial tension, and to investigate the effects of viscoelasticity and moving speed on
the vibration and stability of an example moving viscoelastic beam.
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2. Equation of motion
2.1. Constitutive equation

The three-dimensional constitutive equation for an integral type anisotropic linearly viscoelastic material
is given by (Christensen, 1982)

o;(t) = /_ Figa (t — T)é(t) dt = ryjg () * deg (2), (1)

o0

where g;(¢) is the tensor of stress history, ¢;(7) is the tensor of strain history, r;/(?) is the fourth order tensor
of relaxation function, and (*) denotes the Stieltjes convolution between r;(f) and de;(f). The dot (-) de-
notes the derivative with respective to time ¢. For the one dimensional isotropic linearly viscoelastic mate-
rial, (1) can be reduced to

a(t) = /t r(t — t)é(r)dr = r(z) = de(z). (2)

In the frequency-domain, (2) can be expressed as
(@) = ioR(w)s(w), 3)

where 1 = v/ —1 is the imaginary unit, o is the circular frequency, and o(w), &(®) and R(w) are the Fourier
transforms of the stress history a(#), strain history &(¢), and relaxation function R(¢), respectively.

2.2. Equation of motion

Consider a uniform straight viscoelastic beam of length L, which travels at constant transport speed ¢
under an applied axial tension P. The equation of motion and relevant boundary conditions can be derived
from the extended Hamilton’s principle (Abolghasemi and Jalali, 2003):

/ (8K — 8V + W) dt = 0. (4)
4

The kinetic energy K and the potential energy J are given by

1 L
K== / pA{c* + (W + ew')*}dx,

2 Jo
1t ()
V= 3 / (Mw" + Pw'*)dx,

0

where w(x, ) is the transverse deflection, pA is the mass per length, and M is the resultant bending moment
of beam. In (5), the prime (') denotes the derivative with respective to spatial coordinate x. The virtual work
OW is given by

L
SW:/ f(x,l)8x+M1891+M2692+Q16W1+Q25W27 (6)
0

where f{x,?) is the external force, and M;, Q; and 0, are the bending moment, the transverse shear force,
and the slope specified at x = 0, while M,, O, and 0, are those specified at x = L. The slopes 0; and 0, are
related to the transverse deflection as

0:(t) = w'(0,1), 0,(t) = w'(L,¢). (7)
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Introducing (5) and (6) into the extended Hamilton’s principle (4), and applying the integral by parts
yields

t L
/ / [—M" — pA(PW' + 2w +b) + Pw" + f(x,1)] Swdxds
1 0
t 5]
+ / {O0x, £) Sw|g + O, Swy + 0, 3w, } dr + / {—M(x,2)80[5 + M, 30, + M,80,} dt = 0, (8)
1 t

where M(x,t) and Q(x,t) are the resultant bending moment and transverse shear force, respectively, defined
by

M(x,t) = /A —ozd4, O(x,t) = M+ pAc(Ww + cw') + PW'. 9)

From (8), the equation of motion for the moving viscoelastic beam can be obtained as
H{R(t) * W"} + pA(PW' + 2eW 4+ %) — Pw" = f(x,1) (10)
with the relevant boundary conditions as

W(Oa t) =w; Oor Q(Oa t) = Qla
H(O,I) = 01 or M(O7t) = —]‘417

11
W(L)=ws o Q(L1) = 0. -
G(L,t) =0, or M(L,l) =M,.
Substituting (2) into (9) gives the relations:
M(x,t) =I(RxW"), Ox,t) = I(R+W") + pdc(W + cw') — PW. (12)

3. Spectral element formulation

The spectral element formulation begins with the governing equation of motion without external force.
The general solution is then represented in the discrete Fourier transform (DFT) form as

Wi o) = 3 W, (x)e, (13)

where W,(x) is the spectral components (or Fourier coefficients) corresponding to discrete frequencies
w,=2nn/T (n=0,1,2,...,N — 1), where N is the number of spectral components to be taken into account
in the analysis, and T is the time window related to N as

where fnvq is the highest frequency called Nyquist frequency. The spectral components are arranged to sat-
isfy Wy_, = W, where W is complex conjugate of W, by the theory of DFT. The accuracy of time re-
sponses may depend on how many spectral components are taken into account in the analysis. The
summation and subscripts used in (13) are so obvious that they will be omitted in the following equations
for brevity.

By substituting (13) into (10), with f{x, ) =0, one can obtain

iOR(w)IW" — (P — pA)W" 4 2iwpAcW' — pAa®W = 0. (15)
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The general solution of (15), i.e., the nth specific spectral component, is assumed in the form as

W(x) = Ce*, (16)
where k is the wavenumber. Substituting (16) into (15) yields a dispersion relation:

iwR(0)Ik* + (P — pAc*)k* — 2wpAck — pAw® = 0. (17)

From (17), four roots &, (r = 1,2,3,4) can be obtained. Then the general solution of (15) can be rewritten
as

W(x) = 24: C,er, (18)

Now, consider a finite beam element of length / as shown in Fig. 1. The spectral nodal degrees of freedom
(DOFs), the spectral nodal shear forces and the spectral nodal bending moments are listed in Fig. 1. The
spectral nodal DOFs are defined by

wi=w0), ©, =),

wy=w(l), 0, =w(. (19)

Substituting (18) into (19) gives a relation between the nodal DOFs vector d and the constants vector C as
d=Y(w)C, (20)
where
d={w, 0, W, 0,}', C={C C C; G},
1 1 1 1

€181 ex& €383 e4éy
with the definitions of
e =ik, e =e"  (r=1,2,34). (22)

Assume that the shear force Q(x, r) and bending moment M(x, ¢) can be represented in the DFT forms as

N-1 N—1
0, 1) =Y 0, M(x,t) =Y M,(x)e". (23)
n=0 n=0
Applying (13) into (12) and using (23) gives the spectral components of Q(x,) and M(x,t) as follows:
M(x) = ioR(w) W, O(x) = iwR(w)W" + (pAc* — P)W' +iwpAcW, (24)
@1 W1 Wz @2
M1 Q1T TQZ MZ

A

Fig. 1. Sign convention for the moving finite viscoelastic beam element.
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where the subscript # is omitted for brevity. The nodal shear forces and nodal bending moments specified
on the finite beam element shown in Fig. 1 are defined by

0,=00), M =-MO0), 0,=-00), My=M() (25)

Substituting (18) into (24) and applying the results into (25) yields a relation between the nodal forces vec-
tor f'and the constants vector C as

f=X()C, (26)
where

—& & 8 &
—h —h —h —h
f={o M 0 M)}", Xw=| ' 7 7 (27)

€18; €8, €383 €484

€1h1 €2h2 €3h3 €4h4
with
g, = —i[ioR(w)k} + (pAc* — P)k, + wpAc],  h, = —ioR(w)k.. (28)

The constants vector C can be readily eliminated from (20) and (26) to obtain the relation between the
nodal forces vector and the nodal DOFs vector as follows:

f=S(o)d, (29)
where S(w) is the frequency-dependent spectral element matrix defined by

S(w) = X(0)Y(w) " (30)

The spectral element matrices can be assembled in a completely analogous way to that used in the
conventional FEM. Finally applying the boundary conditions may provide a global system equation in
the form:

Se(w)dy = fy, (31)

where S,(w) is the global spectral matrix, d, is the global spectral nodal DOFs vector, and f; is the global
spectral nodal forces vector.

The natural frequencies wnaT can be obtained from the condition that the determinant of global spectral
matrix Sy(w) becomes zero as

det Sg(a)NAT) =0. (32)

To compute the roots of (32), one may plot det.S,(w) with respect to the frequency w and/or use a proper
root-finding algorithm. Not to miss any roots bellow a certain specified frequency during the root search
process, the Wittrick—Williams algorithm (Wittrick and Williams, 1971) can be applied.

To obtain the dynamic responses in time-domain, first compute f, from the external forces transformed
into the frequency-domain by using the forward-FFT algorithm. Next solve (31) for d, and apply the results
into (20) to compute the spectral components of response from (18). Finally, based on the DFT theory of
(13), the inverse-FFT algorithm is used to obtain the vibration response in the time-domain. One may
remember that, because there have not been made any restriction on R(w), the Fourier transform of relax-
ation function of a viscoelastic material, the spectral element matrix of (30) is general and can be applied to
any linearly viscoelastic moving beams subjected to axial tension.
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4. Numerical results and discussion

Numerical studies have been conducted to evaluate the present spectral element model as well as to
investigate the effects of viscoelastcity and moving speed on the dynamics and stabilities of moving visco-
elastic beams.

For the numerical studies, two beam models shown in Fig. 2 are considered: one-span beam (Fig. 2a)
and two-span beam (Fig. 2b). The one-span beam is simply supported at both ends and the two-span beam
is constructed by connecting two equal one-span beams so that its total length is twice the length of the
original one- span beam. The mid-point and two ends of the two-span beam are all simply supported. Each
span of beam has the length L =1m, width 5 =0.2m, thickness 2 =0.0015m, and mass density
p = 7800kg/m>. The viscoelasticity of the beam material is represented by the Kelvin—Voigt model (see
Fig. 3), which can be represented by (Fliigge, 1975)

a(t) = Ee(t) + ne(t). (33)

Thus, the Fourier transform of the relaxation function of viscoelastic material can be obtained from (33) as
by (Fliugge, 1975):

ioR(w) = E + ion. (34)
For numerical computations, Young’s modulus E =2 x 10'' N/m? is used with varying the magnitude of
viscoelasticity 7.

4.1. Accuracy of spectral element model

The high accuracy of the present spectral element model is verified first by comparing the eigenvalues
obtained by using the present SEM with those by the conventional FEM as well as with the exact analytical

(a)

“—— | ———Pe——— | ———>

4 % 7
(b)

Fig. 2. Two stationary beams with simply supported boundary conditions. (a) One-span beam and (b) two-spans beam.

Fig. 3. Kelvin—Voigt model of the viscoelastic beam material.
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results from (Karnovsky and Lebed, 2001). For this end, we assume that two example beams shown in
Fig. 2 are stationary (i.e., ¢ = 0m/s), but not subject to the axial tension (i.e., P = 0 N). The finite element
model used for the FEM results can be represented by

Md+ (Cg+ Cy)d+Kd =f (35)

where d is the nodal displacement DOFs vector defined by (20), f'is the nodal forces vector, M is the mass
matrix, Cg is the skew-symmetric gyroscopic matrix, Cy is the viscoelastic damping matrix, and K is the
stiffness matrix. To formulate the finite element model given by (35), the displacement fields within a finite
element of length / are assumed in the form (Petyt, 1990)

w(x, 1) = N(x)d(z), (36)

where N(x) is the shape function matrix given by

Nx) = [1-38 +28, & - 1)71,38 - 28, 4& - 91, (37)
where
5—)76 0<x< ) (38)
The finite element matrices M, Cg, Cy and K are given by
156 221 54 —13/ 0 6/ 30 -6/
 pAl 4P 131 =37 ¢ _pde| =610 @l ~r
~ 420 156 —221 ©730 |30 61 0 61|
sym 47 6/ I —61 0
129 6nll  —12nl 6yl K1 K Ki3 Kuis (39)
o 1 dnll*  —6nll  24Il° _EL Ky Kx Ky
& 1200 —6nil |’ 307° Ky Ku |
sym anlr* sym Ky
where
K = —K3 = K33 = 360 + 36r — 36s,

K12 :K14 = 7K34 = 180]+ 3rl — 3Sl,
Koy = 600> — rl> + s,
Ky = Kuy = 1207 + 4r* — 4s/?,
PP _ pAc*P
£ T E

Tables 1 and 2 compare the lowest five eigenvalues (i.e., 41,45, . ., 45) of the one-span beam and the two-
span beam, respectively, for two cases. The first case is when the viscoelasticity is not taken into account
(i.e., n = 0) and the second case is when the viscoelasticity is taken into account (i.e., 7 = 6.8 x 10~*E, where
E =2 x10""N/m?). Physically, = 0 means that the beams are pure elastic, while  # 0 means that the
beams are viscoelastic. For the SEM results, only one finite element is used for the one-span beam while

two finite elements for the two-span beam. Tables 1 and 2 show that the present SEM results are identical
to the exact analytical results (Karnovsky and Lebed, 2001). When the beams are pure elastic (i.e., n = 0),

=
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Table 1

The lowest five eigenvalues of the simply-supported stationary one-span beam obtained by the present SEM, FEM and the exact
theory (Karnovsky and Lebed, 2001)

n Method N ;»1 /lz /l3 ;»4 ).5

Theory 3.4441 13.7771 30.9981 55.1071 86.1051
(exact)

SEM 1 3.4441 13.7771 30.9981 55.1071 86.1051
FEM 10 3.4441 13.8001 31.0141 55.1981 86.4451
20 3.444i 13.7781 30.9991 55.113i 86.1271
50 3.4441 13.7771 30.998i 55.1071 86.1061
100 3.4441 13.7771 30.9981 55.1071 86.1051
6.8x 107*E SEM 1 —0.025+3.444i —0.405+13.7711 —2.052+30.930i —6.486+ 54.7241 —15.836 + 84.6361
FEM 10 —0.025+ 34441 —0.407+ 13.7941 —2.055+ 30.9461 —6.508 + 54.8141 —15.961 + 84.9591
20 —0.025+3.444i —0.405+13.7721 —2.052+30.9311 —6.488 +54.7301 —15.844 + 84.6581
50 —0.025+3.4441 —0.405+13.7711 —2.052+30.930i —6.486 + 54.7241 —15.836 + 84.6371i
100 —0.025+3.444i —0.405+13.7711  —2.052+ 309301 —6.486+ 54.7241 —15.836 + 84.6361

Note: (1) N = number of finite elements, (2) E =2 x 10" N/m?.

Table 2
The lowest five eigenvalues of the simply-supported stationary two-span beam obtained by the present SEM,
theory (Karnovsky and Lebed, 2001)

FEM and the exact

n Method N ;»1 )»2 23 /l4 /l5
0 Theory 3.4441 5.3811 13.7771 17.4361 30.9981
(exact)
SEM 2 3.4441 5.3811 13.7771 17.4361 30.9981
FEM 10 3.4461 5.382i1 13.8001 17.482i 31.2441
20 3.4441 5.3811 13.7781 17.4391 31.0141
50 3.444i1 5.3811 13.7771 17.4361 30.9981
100 3.4441 5.3811 13.7771 17.4361 30.9981
6.8x107*E SEM 2 —0.025+3.444i —0.062+ 53801 —0.405+13.771i  0.649+ 17.424i  —2.052 + 30.9301
FEM 10 —0.025+3.4451 —0.062+5.382i  —0.407 +13.7941  0.653 +17.4701  —2.085+ 31.1741
20 —0.025+3.4441 —0.062 +5.3801  —0.405+ 13.7721  0.650 + 17.4271  —2.055 + 30.9461
50 —0.025+3.444i —0.062+5.380i —0.405+13.771i  0.649+17.4241  —2.052 + 30.9301
100 —0.025+3.444i —0.062 +5.3801 —0.405+ 13.771i  0.649+ 17.4241  —2.052 + 30.9301

Note: (1) N = number of finite elements, (2) E =2 x 10" N/m>.

the FEM results indeed converge to the SEM results or to the exact analytical results as the total number of
finite elements is increased up to about 100 for the one-span beam and about 50 for the two-span beam.
This is also true for the viscoelastic beams with 1 = 6.8 x 10*E. This observation certainly confirms the
extremely high accuracy of the present spectral element model.

4.2. Effect of viscoelasticity and moving speed on the stability

The eigenvalues for the one-span beam and two-span beam are illustrated in Tables 1 and 2, respectively.
It is assumed that two beams are all stationary (i.e., ¢ =0m/s), but not subject to axial tension (i.e.,
P =0kN/m). Tables 1 and 2 show that all eigenvalues are pure imaginary for pure elastic beams (i.e., when
n = 0). However, for the viscoelastic beams (i.e., when 5 # 0), the all eigenvalues are complex with imag-
inary values of which magnitudes are slightly reduced due to the effect of viscoelasticity. This implies that
the effect of viscoelasticity tends to make two stationary beams more stable with reduced natural
frequencies.
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Fig. 4. Moving speed and viscoelasticity dependence of the lowest two eigenvalues of moving one-span beam subject to axial tension
P=2.5kN/m: (—) for =0 and (---) for = 6.8 x 107*E (E =2 x 10" N/m?).

Fig. 4 shows the effects of the moving speed (¢) and the viscoelasticity () on the variation of the lowest
two eigenvalues (4, and 2,) of the moving one-span beam (Fig. 2a) subject to the axial tension P = 2.5kN/
m, while Table 3 on the stability of the corresponding two natural modes. Four zones (i.e., Zone A, Zone B,
Zone C, and Zone D) are indicated in both Table 3 and Fig. 4, depending on the range of moving speed of
beam. From Fig. 4 and Table 3, one may find the followings.

In Zone A, the imaginary parts of eigenvalues (i.e., natural frequencies) are reduced in magnitude as the
moving speed is increased up to the lowest critical moving speed of about 33.40 m/s. This is true whether the
beam is pure elastic or not. Thus, if the moving speed is kept below the lowest critical moving speed,
the first natural mode and the second natural mode corresponding to 4; and A, respectively, are always sta-
ble. It is interesting to observe that only the imaginary part of Ay, i.e., the first natural frequency) vanishes
completely as the moving speed reaches the lowest critical moving speed while its real part turns to positive
from zero for the case of elastic beam (i.e., when 1 = 0) or to positive from negative for the case of visco-
elastic beam (i.e., when 1 # 0). Physically this implies that the first natural mode becomes unstable by the
divergence instability when the moving speed becomes equal or larger than the lowest critical moving speed
of about 33.40m/s. The lowest critical moving speed is called the divergence speed and denoted by ¢p. The
effect of viscoelasticity can be found numerically or analytically not to affect the divergence speed c¢p.
Because the divergence is the static instability, the divergence speed c¢p for a simply-supported moving



Table 3

Effects of moving speed and viscoelasticity on the lowest two eigenvalues 4; and 2, of the moving one-span beam subject to axial tension P = 2.5kN/m (E =2 x 10" N/

mz)
Visco- Natural Zones Zone A Zone B Zone C Zone D
elasticity modes C < Cp=3340 Cp < C<3547 3547 < C< Cp=36.25 36.25 < €< 38.67
n
Points (m/s) a b c Cp d e f g h i Cg j k 1
(32.0) (32.5) (33.00 (334) (34.0) (34.5) (35.00 (35.5 (36.0) (36.2) (36.25 (36.5 (37.0) (37.5)
0 First Re[4] 0 +ve 0 +ve
mode Im[4,] +ve 0 +ve +ve
Stability Stable Divergence Stable Flutter
(neutral) (neutral)
Second Re[4,] 0 0 0 +ve
mode Im[4,] +ve +ve +ve +ve
Stability Stable Stable Stable Flutter
(neutral) (neutral)
6.8x 107> E  First Re[4] —ve +ve +ve +ve
mode Im[4,] +ve 0 +ve +ve
Stability Stable Divergence Flutter Flutter
Second Re[4,] —ve —ve —ve —ve
mode Im[45] +ve +ve +ve +ve
Stability Stable Stable Stable Stable
6.8x107* E  First mode Re[/] —ve +ve +ve +ve
Im[4] +ve 0 +ve +ve
Stability Stable Divergence Flutter Flutter
Second Re[4,] —ve —ve —ve —ve
mode Im[4,] +ve +ve +ve +ve
Stability Stable Stable Stable Stable
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one-span beam can be readily derived from the static version of eigenvalue problem for the moving beam as

follows (see Appendix A):
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Fig. 5. Dynamic responses of the moving one-span beam subject to axial tension P = 2.5kN/m at various moving speeds. (a) Elastic

beam (7 = 0) and (b) viscoelastic beam (n = 6.8 x 107*E).
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The divergence speed computed directly from (41) is found to be identical to the numerically computed
value 33.40m/s, which is illustrated in Table 3 and Fig. 4.

In Zone B, the first natural mode is unstable with divergence instability, while the second natural mode
keeps stable whether the beam is pure elastic (i.e., # = 0) or not (i.e., n # 0).

In Zone C, the imaginary parts of A; and A, are all positive. As the moving speed is increased, they
merge gradually to each other. In other words, the first natural frequency increases while the second
natural frequency decreases. In Zone C, the real part of A, is zero for the case of elastic beam, but
positive for the case of viscoelastic beam, while the real part of 1, is always negative in Zone C. This
implies that, in Zone C, the second mode is always stable, and the first natural mode will be stable for
the case of elastic beam and unstable (flutter instability) for the case of viscoelastic beam, which is
the commonest case in practice. In other words, the viscoelasticity effect removes the second stable
zone which may appear just after the divergence zone if elastic beam is elastic: this is probably the
commonest case.

For the case of pure elastic beam (1 = 0), two complex eigenvalues 4, and 4, completely merge to a single
complex value at the boundary between Zone C and Zone D (i.e., at about ¢ = 36.25m/s). The imaginary
part of the merged single complex eigenvalue is positive while the corresponding real part is zero. As the
moving speed is increased beyond the critical moving speed of about 36.25m/s, the imaginary part of
the merged single complex eigenvalue decreases in magnitude while the real part increases. This observation
implies that, for the case of elastic beam, the first and second natural modes are completely merged to a
single coupled-mode which is unstable with flutter instability.

However, it is very interesting to investigate that the dynamics of the viscoelastic beam (1 # 0) seems to
be different in detail from that of the pure elastic beam (7 = 0). In contrary to the case of pure elastic beam,
two eigenvalues 4; and 1, of viscoelstic beam are not same and don’t merge to a single value even though
the moving speed is kept increasing beyond the critical moving speed of about 36.25m/s. The imaginary
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Fig. 6. Effect of viscoelasticity on the first natural mode shape of moving one-span beam subject to axial tension P = 2.5kN/m. (a)
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parts of A; and A, are all positive, but slightly different. The real part of 1; is positive while that of 1, is
negative. This implies that the second natural mode keeps stable while the first natural mode of viscoelastic
beam becomes unstable by the flutter instability as the moving speed is increased to become equal or grater
than a critical moving speed of about 36.25m/s, which is the flutter speed denoted by cg. Thus, the coupled-
mode flutter of a pure elastic beam should be distinguished from the first natural mode flutter of a visco-

elastic beam.
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Fig. 7. Effect of moving speed on the first and second natural mode shapes of the moving elastic one-span beam (7 = 0) subject to axial
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tension P = 2.5kN/m. (a) First mode and (b) second mode.
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Fig. 8. Effect of moving speed on the first and second natural mode shapes of the moving viscoelastic one-span beam (1 = 6.8 x 10~*E)
subject to axial tension P =2.5kN/m. (a) First mode and (b) second mode.

Fig. 5(a) and (b) show the dynamic responses of the pure elastic one-span beam and the viscoelastic one-
span beam, respectively, at various moving speeds: ¢ = 16.7m/s in Zone A, ¢=33.4m/s in Zone B,
¢=36.0m/s in Zone C, and ¢ =36.25m/s in Zone D. As can be expected from Table 3 and Fig. 4, the
dynamic response for the pure elastic beam is stable (strictly speaking, neutral) at ¢ = 16.7m/s, the diver-
gence at ¢ = 33.4m/s, stable (neutral) at 36.0m/s, and the flutter at ¢ = 36.25m/s. However, the dynamic
response for the viscoelastic beam is somewhat different from that for the pure elastic beam. For instance,
the viscoelstic beam is stable (not neural) at ¢ = 16.7m/s and the flutter ¢ = 36.0m/s.
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4.3. Effect of viscoelasticity on the natural modes

Fig. 6 compares the first natural mode shapes of the moving one-span beam at four moving speeds of the
one-span beam subject to the axial tension P = 2.5kN/m, depending on the degree of viscoelasticity #. The
viscoelasticity tends to slightly distort the original natural mode shape of pure elastic beam (i.e., when
n =0). The changes of natural mode shapes due to the viscoelasticity are found to be relatively larger
in flutter zones (i.e., Zone C and Zone D) when compared with the other zones of lower moving speeds.
In general, however the effect of viscoelasticity on the change of natural modes seems to be not so
significant.

4.4. Effect of moving speed on the natural modes

Fig. 7 compares the first and second natural mode shapes at various moving speeds for the elastic one-
span beam subject to the axial tension P = 2.5kN/m (i.e., when 5 = 0), while Fig. 8 is for the viscoelastic
one-span beam. The alphabets appeared in the legend of each figure denotes the different moving speeds of
beam which are indicated in Table 3 as well as in Fig. 4. Form both figures; one may find that the natural
modes gradually change their shapes as the moving speed of beam is increased. Comparing the first and
second natural mode shapes at the same moving speed together as the moving speed of beam is increased,
one may realize that two natural mode shapes are gradually changed to resemble to each other. In case of
the elastic beam, Fig. 7 clearly shows that the first natural mode shape becomes exactly same as that of the
second natural mode shape. Thus, as already discussed in the previous sub-section, the elastic beam will
flutter in a completely merged single couple-mode when the moving speed is ¢ > ¢g. However, in case of
the viscoelastic beam, Fig. 8 shows the first two natural mode shapes resemble closely, but they are not ex-
actly same. Thus, as also discussed in the previous sub-section, the viscoelastic beam will flutter only in the
first mode when the moving speed is ¢ > cF.

5. Conclusions

In this paper, the exact dynamic stiffness matrix so called spectral element matrix is derived to develop a
spectral element model for the transverse vibration of an axially moving viscoelastic beam subject to an
axial tension. The viscoelasticity of the beam material is represented in a general form by using the one-
dimensional constitutive equation of hereditary integral type of viscoelastic material. The present spectral
element model is then verified by comparing its solutions (e.g., eigenvalues) with those obtained by the con-
ventional FEM as well as with those obtained by the exact theory. Numerical studies are conducted to
investigate the viscoelasticity effect on the dynamics and stability of an example axially moving viscoelastic
beam. The viscoelasticity effect is found to remove the second stable zone which may appear just after the
divergence zone if elastic beam is elastic. It is also found that the first and second modes gradually change
and merge to resemble to each other as the moving speed of beam is increased. As the result, only first nat-
ural mode becomes unstable with flutter in the case of viscoelastic moving beam, while a single coupled-
mode flutter may occur for the case of pure elastic moving beam.

Appendix A
The divergence speed cp at which the static instability occurs can be derived in a closed form by consi-

dering the existence of non-trivial equilibrium position, i.e., the corresponding static eigenvalue problem
(Wickert and Mote, 1990; Oh et al., 2004).
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The characteristic equation of the static eigenvalue problem for the simply-supported Kelvin—Voigt
model moving beam can be reduced directly from (17), by putting @ =0 and also by using the relation
iI0R(®)|,—0 = E from (34), as follows:

El* 4 (P — pAch)k* = 0. (A1)
Four roots can be obtained from (A.1) as

pAc* — P
EI

ki =ky =0, ky=—k;= k. (A.2)

The non-trivial equilibrium displacement can be then expressed in the form
W(x) = Ci + Cox + C3e™ 4 Che*. (A.3)
The simply-supported boundary conditions are given by
w(0) =0, w"(0) =0,

A4
W(L) =0, w"(L) =0. (A4)
Applying (A.4) to (A.3) yields

1 0 1 1 C 0
0 0 —i —i? C, 0

A A = A5

1 L elkL e—lkL C3 0 ( )
0 0 —ke  —fPe ™| Cy 0

From the condition of the existence of nontrivial solutions of (A.5), the characteristic values can be ob-
tained as
2n — 1
knzy (n=1,2,3,...). (A.6)
Substituting (A.6) into (A.1) gives the divergence speed c¢p,, at which the divergence instability of the nth
vibration mode occurs:

EI P
n= | —k 4+ —. A7
¢p LRy (A7)

The lowest divergence speed cp is given at n =1 as follows:
El ym\2 P
n =1/ 7 — A8
D pA (L) + pA (A8)
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